JR3 Multi-Axis Force-Torque Sensor Technical Specifications

Sensor Model: Mechanical Load Rating:	67M25A3 25 lb	67M25A3 50 lb
Diameter (in)	2.64	2.64
Thickness (in)	0.984	0.984
Material	AL 2024	AL 2024
Weight (Ib)	0.40	0.40
Nominal Accuracy, all axes (% measuring range)	±1.0	±1.0
Operating Temp. Range, non-condensing (°F)	-40 to +150	-40 to +150
F _x , F _y		
Standard Measurement Range (lb)	±25	±50
Digital Resolution (b)	0.0063	0.013
Stiffness (lb/in)	29,000	73,000
Single-axis Overload (lb)	105	210
Multi-axis Overload Coefficient, a (lb)	105	210
Multi-axis Overload Coefficient, b (lb)	135	270
Multi-axis Overload Coefficient, c (lb)	110	220
Fz		
Standard Measurement Range (Ib)	±50	±100
Digital Resolution (Ib)	0.013	0.025
Stiffness (Ib/in)	290,000	740,000
Single-axis Overload (lb)	430	870
Multi-axis Overload Coefficient, d (lb)	430	870
M _x , M _y		
Standard Measurement Range (in-lb)	±65	±130
Digital Resolution (in-lb)	0.016	0.033
Stiffness (in-lb/rad)	190,000	470,000
Single-axis Overload (in-lb)	250	510
Multi-axis Overload Coefficient, e (in-lb)	350	700
Multi-axis Overload Coefficient, f (in-lb)	950	1900
Multi-axis Overload Coefficient, g (in-lb)	250	510
Mz		
Standard Measurement Range (in-lb)	±65	±130
Digital Resolution (in-lb)	0.016	0.033
Stiffness (in-lb/rad)	47,000	130,000
Single-axis Overload (in-lb)	190	430
Multi-axis Overload Coefficient, h (in-lb)	190	430

Standard Measurement Range

 This is the range of loads that each sensor model is ideally suited to measure. Factory adjustments to internal electronics allow custom measurement ranges to meet application-specific needs.

Bolt Patterns

- The 67M25A3 and 67M25S3 (65lb only) sensors are available standard with the ISO 9409-1 Ø40mm bolt pattern.
- Alternate and custom bolt patterns are also available.

Multi-axis Overloads

Insert your applied loads and the coefficients from the above table into the equations below to determine safe loading:

 F_x/a + F_y/a + F_z/d + M_x/e +M_y/e +M_z/h \leq 1 and

 $F_x/b + F_y/c + F_z/d + M_x/f + M_y/g + M_z/h \leq 1$ and

 $F_x/c + F_y/b + F_z/d + M_x/g + M_y/f + M_z/h \le 1$

All 3 equations must be satisfied to avoid damage.

• If additional overload capability is desired we recommend using a higher-rated sensor with electronically lowered measuring ranges.